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On the disintegration of water drops in an air stream 

By K. N. DODD 
Royal Aircraft Establishment, Farnborough 

(Received 1 March 1960) 

A theory is developed, based on the very limited available experimental evidence, 
to predict the distortion and disintegration of a water drop when it is exposed to 
a stream of air with continuously increasing relative velocity. The theory is 
applied to water drops situated in the path of a solid sphere moving through the 
air. 

1. Introduction 
In the absence of aerodynamic forces, a drop of water will take up a spherical 

shape under the influence of surface tension. But when the drop moves through 
the air, aerodynamic forces are also applied to its surface and these will distort 
the drop from its spherical form. The distortion is of two types. For very high 
velocities of relative motion, such as occur near explosions, the outer surface is 
stripped off the drop while the central portion remains momentarily a t  rest. In  
this note, however, we shall only be concerned with the second type of distortion 
which only occurs at lower relative velocities. 

The stages in this second type of distortion are shown in figure 1. As the relative 
velocity is increased from zero, the originally spherical drop (a), has its leading 
surface flattened ( b ) ,  then the flattened surface becomes concave. The hollow 
increases in depth until it  almost protrudes through the back of the drop. After 
this a spherical bubble in the shape of a bag begins to develop (c) and the bubble 
expands rapidly from the annular ring of water on which it is formed (d). The 
thin sheet of water forming the bubble eventually becomes unstable and dis- 
integrates into tiny droplets (e). Soon after this the annular ring also becomes 
unstable and breaks up into somewhat larger droplets. 

2. The experimental evidence 
The experimental evidence on this subject appears to be limited to some un- 

published work by Lane & Edwards (1948) in which photographs of drops in the 
various stages of bursting outlined above are given. This work is mainly an ac- 
count of some experiments in which drops of water were dropped under gravity 
into a vertical wind tunnel. This apparatus consisted of a vertical tube as shown 
in figure 2,  with a flared entry. Air was sucked in through the top and out through 
an exhausting fan P. Water drops D of known size were allowed to fall from a 
pipette down the centre line of the tube and the air velocity was adjusted until 
disintegration was obtained in the tube. For our purposes, the main result in 
this paper was a graph showing the position of a 2-38 mm diameter drop in the 
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FIGURE 1 (a-e). Stages of broak-up of a water drop. 
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FIGURE 2. Cross-section of wind tunnel for experiment. 

FIGURE 3. Motion of a water drop in the wind tunnel. Original diameter of the water 
drop, 2.38 mm. Air velocity, 23.2 mlsec. 
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tube at intervals of time of about 8 ms. On the graph was also indicated the stage 
of disintegration reached by the drop at some of the time intervals. This graph is 
reproduced in figure 3. The displacement is the distance the drop has moved past 
the point 0 in figure 2. A good series of photographs like figure 1 was also obtained 
for a 2-2mm diameter drop (see also Lane & Green 1956). 

We shall also require, for our investigations, the pressure distribution on a solid 
sphere exposed to a stream of air. This distribution was found from experiment 
by Hinze (1948) to be 

p =p , (V-~)~(9cos~8-5 ) /8  for 0 G 8 G $77, 

for gn G 8 < n, = - lip,( V - ~)' /32 

where pa is the density of air, V is the air speed, u is the drop speed and t? is the 
angular distance from the point on the sphere facing the oncoming air stream. 
These formulae appear to be confirmed approximately by other investigations, 
for example, Fage (1937). 

3. The condition for disintegration 
The main theoretical discussion of the results of experiments on water drops 

has centred on ascertaining the conditions under which break-up will occur. 
Lane & Edwards thought that the break-up would occur roughly when the force 
due to the variation of aerodynamic pressure over the drop exceeds that due to 
surface tension. They wrote 

where T is the surface tension of the liquid, d is the diameter of the drop and k 
is a constant. From this it follows that 

4T/d = kp,( v - u)2, 

d( V - u)' = constant, 

and Lane & Edwards showed from their experiments that this relation holds 
approximately. 

Prandtl (1952, p. 325) discusses the phenomenon and arrives a t  a similar 
result. He also mentions some experiments very similar to  those of Lane & 
Edwards which were performed by Hochschwender at Heidelberg as early as 
1919. On the other hand, Hinze showed from a theoretical consideration of the 
break-up of freely falling drops that the condition of break-up is not an explicit 
equation but depends on the history of the relative velocity ( V - u). 

Our view is that the Hinze theory is not applicable to Lane & Edwards's 
experiments. 

To propound our theory on the matter, we must refer again to figure 1. As 
the relative velocity is increased, the drop takes on the form shown in (c) in 
which the bubble is just beginning to form. Let us draw a dotted sphere through 
this bubble. Then we contend that the critical velocity for bursting is the velocity 
which makes the radius of this circle a minimum. Let p ,  be the pressure just 
inside the bubble and p ,  the pressure just outside and let 
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this equation defining p which we shall regard as a constant. This equation is 
assumed to hold for all stages of the bubble formation. Let r be the radius of the 
bubble, then 

and taking these equations together we get 

P,-P, = 4 ~ 1 r  

r (V-u)2  = 4 T / p p ,  

which holds for all stages of the bubble formation. Let rm be the minimum radius 
of the bubble. Substituting in this equation, we obtain the following expression 
giving the critical velocity 

(1) 

It appears from what few photographs are available that this minimum radius 
is about twice the radius of the original spherical drop. Hence we get essentially 
the same form of condition for break-up as that postulated by Lane & Edwards. 

The constant ,u is at  this stage unknown but we can get a very rough approxi- 
mation from the distribution of pressure over a solid sphere. In  the distribution 
given above, the pressure is positive for 8 from 0" to about 43" and is negative and 
of dmost constant value over the rest of the sphere. If we take p ,  as this constanti 
value and pl as the averaged pressure over the positive region of the sphere, we 
obtainp = 0.238 - ( - 0.344) = 0.582. 

rm( V - u)&it,. = 4 T / p ~ a .  

4. The dynamics of the burst 
In  general the relative velocity V - u  is not given. Usually, V is given as a 

function of position s; the drop velocity u being determined by an equation of 
motion for the drop, which depends on V through the aerodynamic drag. The 
relative velocity will normally increase up to the critical velocity given by (1) 
after which there will be a rapid increase in the size of the drop (i.e. bubble) 
followed by bursting. The critical velocity conveniently divides the motion into 
two phases. We shall consider phase I1 first as it is the more interesting both 
theoretically and for the purpose of our applications. 

For phase I1 we propose to idealize the problem by replacing the bubble by a 
hollow sphere. Let rn be the mass of the original drop of water. We shall suppose 
a fraction! of this mass is contained in the hollow sphere and that the remaining 
mass is travelling along with the sphere but is not expanding. Lane & Edwards 
estimated that a fraction 0.3 of the mass of the original sphere is in the bubble 
but at  present we shall not commit ourselves to this figure. Then the equations of 
motion for the sphere as a whole moving in a straight line are 

as 
& = 21, 

where t is time, r is the radius of the hollow sphere and CD is the drag coefficient. 
The gravity term has been put in as appropriate for comparison with the Lane 
& Edwards's experiments. The positive directions of s, u and V are all downwards. 
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To obtain the equation for the expansion of a thin spherical shell, consider a 
small area A on the shell. Let the thickness of the shell be 6r. The mass of this 
area of shell is A&, taking the density of water to be unity; its acceleration is 
d2r/dt2. The relation between acceleration and the force acting is thus 

But the total volume of the shell is 

4nr26r = f,, (4) 

which gives UE the value of 6r. Hence we obtain 

Equations (2), (3) and (5) govern the behaviour of the drop after the critical 
velocity has been passed. 

For phase I of the motion, the drop is idealized to a sphere of fixed radius but 
with a larger (but fixed) drag coefficient than that for the original spherical drop. 
Thus in this phase, equations (4) and (5) do not apply. This is the weakest part 
of the theory because the drag coefficient will obviously differ greatly for the 
stages (a),  (b )  and (c )  in figure 1. 

Having established the theory of the motion, out next task is to compare 
it with the Lane & Edwards experiment in the one case for which there was 
adequate information supplied. The funnel-shaped top of the wind tunnel, 
figure 2, was three times as wide at the top as at the bottom and its height was 
5 cm. Measuring s from the point 0, the air velocity is given by 

V 
V(s)  = 

(3 - 0*48)2  
for OGSG5,  

= v for 5 G s, (6) 

where v is the air velocity in the tube. The case given by Lane & Edwards was 
that of a drop of original diameter 0.238 cm. The graph (figure 3) shows the times 
at which the drop reaches a number of points down the tube. At s = 7.2 cm, the 
radius of the bubble is about 0.47 cm and the bubble is on the point of bursting. 
The position s = 7.2 cm is reached about 4ms after passing s = 5 cm. v was 
measured to be 23.2 m/sec. Now from the initial gradient of the (s, t )  graph, it 
appeared that the drop was moving at a velocity u of about 4.8 m/sec at the critical 
point (aasumed to be pretty near s = 5cm). At the critical point we also have 
drldt = 0 and r = r, = 0-238cm (assuming that r, is twice the radius of the 
original spherical drop). It remains to find the value of 8 a t  the critical point. 
This is done by finding V from equation (1) (using u = 4*8m/sec) and hence s 
from equation (6). From the values of the variables a t  the critical point, the 
equations were integrated on an electronic computer to find the conditions at 
s = 7-2 cm. To do this, however, three parameters had to be chosen, namely, p, 

12-2 
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C, and f. A value 0.3 was chosen for f. With this fixed, numerous integrations 
had to be performed with different combinations of p and C, in order to get an 
exact fit to the experimental results. It was found that p mainly affected the 
rate of expansion of the bubble while C, mainly affected the rectilinear accelera- 
tion of the drop but there was some interconnection between the two effects. A 
solution was eventually found with 

f = 0.3, /A = 0.29, CD = 0.5, scrit. = 4.98cm. 

To test the effect of changing f, a solution was also obtained with 

f = 0.6, p = 0.30, CD = 0.5, sCrit. = 4.96cm. 

The value of C, is about what would be expected for a sphere and the values of 
p, although somewhat smaller than that calculated from the solid sphere, seem 
quite plausible. So with these parameters, we felt justified in proceeding to con- 
sider other applications of the equations. 

During the course of the integration trials, it was found that if p was taken too 
small the bubble did not expand at all. But there was a small critical range of p 
such that the bubble began to expand and then contracted again. We think that 
this may explain the phenomenon shown in some of Lane & Edwards’s photo- 
graphs in which the tip of the bubble collapses back through the annular ring. 

The calculations for phase I of the motion presented less trouble as C, is the 
only parameter. It was found that the motion from the pipette down to s = 0 
was not sensibly different from a free fall under gravity, giving a velocity of 
u = 2 m/sec. The acceleration to 4-8 m/sec required a value of about C, = 15 in 
equation (3)’ using the radius of the original spherical drop for r in this equation. 

5. Drops in the path of moving objects 
Our main interest in the theory is to apply it to drops situated in the path of 

objects moving through the air to see whether these drops will be shattered or 
whether they will collide with the object. 

The equations need no modification except (3), which need no longer contain 
the gravity term if the object is moving horizontally. 

We consider the case of a sphere of radius a moving horizontally through the 
air with speed v. It is found convenient to consider the sphere to be at rest and 
the air to be moving. We placed the origin of co-ordinates at the point on the 
sphere facing the oncoming air stream and let the s-axis point in the direction in 
which the air was flowing. Drops are then considered as they approach the sphere 
along the negative s-axis. 

We use parametersf = 0.6, p = 0.3 and CD = 0.5. The value chosen forfcauses 
a slower expansion of the bubble than f = 0-3 and so the probability of bursting 
is not overestimated. The expression for V is 

V(s)  = v - w  __ 
( a  s)’ * 

This expression is obtained from the flow of an ideal fluid round a sphere, but 
experimental work has shown that the expression is very nearly true for air at  
subsonic speeds. 
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Our approach to the problem consists in assuming as a first approximation 
that the drop travels with speed v up to the critical point. The value of s at the 
critical point is then given by 

This is equation (1) with the appropriate values of V and u substituted and with 
r, = 2r, where r is the radius of the originally spherical drop. From the critical 
point onwards the equations were integrated as previously described to see if 
the bubble would burst before colliding with the sphere. From the experimental 
evidence given by Lane & Edwards, the bursting point is taken to be the position 
at which the radius of the bubble is 2rm. But the expansion of the bubble at this 
point is very rapid and so the calculations are not sensitive to the choice of radius 
at burst. If the collision occurs before the burst then that is the end of the matter. 
If the burst occurs first, it is then necessary to test the validity of our assumption 
that the drop speed is v at  the critical point. Of course, it will be slightly less than 
v but we must estimate by how much. From equation (3), the drag force on the 
drop is P = +CDm-’Pa( V - u)’. The work done by this force up to the critical 
point is 

r,t. Pds, 
J --co 

and this is equal to the change in kinetic energy of the drop, i.e. +rn(v2-iY) 
where V is the true velocity of the drop at the critical point. We can overestimate 
the value of the integral by putting a = v, in which case we get 

on using m = +nT3 and putting CD = 20 as an upper estimate. The value of ;ii 
was calculated from this expression. If it  differed greatly from v then the fate 
of the bubble became uncertain. If V turned out close to v, the bursting conclusion 
could be regarded as valid and a slight correction could be applied to the positions 
of the critical and bursting points. 

We considered a range of values of r ,  a and v and the results are tabulated in 
table 1. B denotes that the drop bursts before bitting the sphere, whereas C 
denotes that the drop collides with the sphere. In  all the B cmes, V was within 
5 yo of v. There were two uncertain cases and these are indicated by a question 
mark. 

It will be noted that a larger drop may collide while a smaller drop bursts for 
given a and v. This is in spite of the fact that a higher critical relative speed is 
required for the smaller drop. The explanation is that the smaller drop is more 
easily blown up once the critical point is past due to the smaller thickness of its 
bubble. 

Finally, it is of interest to compare the gradients of relative velocities (at the 
critical points) in the above cases with the gradients in the Lane & Edwards 
experiments for similar drop sizes. The table below gives these gradients, the 
units being m/sec per cm. The values given under the heading ‘sphere’ are the 
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maximum gradients for the cases we have considered in table 1 (i.e. the gradients 
for a = 5, v = 50):  

Lane & 
r Sphere Edwards 

0.2 5.33 14 
0.1 8.46 20 
0.05 13.43 31 

It will be seen that gradients for the sphere are all less than the corresponding 
Lane & Edwards’s gradients so we can be confident in applying the low-velocity 
theory in these cases. 

P = 0.2 cm 
a 

T = 0.1 cm 
a 
A 

-7 r 1 

V 5 10 20 40 V 5 10 20 40 

200 c C C B 200 c C B B 
100 c C C B 100 c C B B 
50 C C C B 50 C C C ? 

r = 0.05cm 
a 

V 5 10 20 40 

200 c B B B 
100 c B B B 
50 C C C ? 

TABLE 1. v is in m/sec, and a in cm. 

6. Conclusion 
In  conclusion, it should be emphasized that the theory of bursting which has 

been put forward is not intended to be final. Indeed, considering the paucity of 
experimental evidence, it would be surprising if the theory does not need to be 
modified when further experimental results became available. It seems, however, 
that the basis of the theory is substantially correct and future work will need to 
be concentrated on determining the degree to which the ‘constants’ in our 
equations must be varied for differing drop sizes. 
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